'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { a(b(x1)) -> x1 , a(c(x1)) -> b(c(a(a(x1)))) , c(b(x1)) -> a(c(x1))} Details: We have computed the following set of weak (innermost) dependency pairs: { a^#(b(x1)) -> c_0() , a^#(c(x1)) -> c_1(c^#(a(a(x1)))) , c^#(b(x1)) -> c_2(a^#(c(x1)))} The usable rules are: { a(b(x1)) -> x1 , a(c(x1)) -> b(c(a(a(x1)))) , c(b(x1)) -> a(c(x1))} The estimated dependency graph contains the following edges: {a^#(c(x1)) -> c_1(c^#(a(a(x1))))} ==> {c^#(b(x1)) -> c_2(a^#(c(x1)))} {c^#(b(x1)) -> c_2(a^#(c(x1)))} ==> {a^#(c(x1)) -> c_1(c^#(a(a(x1))))} {c^#(b(x1)) -> c_2(a^#(c(x1)))} ==> {a^#(b(x1)) -> c_0()} We consider the following path(s): 1) { a^#(c(x1)) -> c_1(c^#(a(a(x1)))) , c^#(b(x1)) -> c_2(a^#(c(x1)))} The usable rules for this path are the following: { a(b(x1)) -> x1 , a(c(x1)) -> b(c(a(a(x1)))) , c(b(x1)) -> a(c(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { a(b(x1)) -> x1 , a(c(x1)) -> b(c(a(a(x1)))) , c(b(x1)) -> a(c(x1)) , a^#(c(x1)) -> c_1(c^#(a(a(x1)))) , c^#(b(x1)) -> c_2(a^#(c(x1)))} Details: We apply the weight gap principle, strictly orienting the rules {a(b(x1)) -> x1} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a(b(x1)) -> x1} Details: Interpretation Functions: a(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [1] c_0() = [0] c_1(x1) = [1] x1 + [1] c^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {c^#(b(x1)) -> c_2(a^#(c(x1)))} and weakly orienting the rules {a(b(x1)) -> x1} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {c^#(b(x1)) -> c_2(a^#(c(x1)))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] b(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [1] c_0() = [0] c_1(x1) = [1] x1 + [9] c^#(x1) = [1] x1 + [8] c_2(x1) = [1] x1 + [3] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {c(b(x1)) -> a(c(x1))} and weakly orienting the rules { c^#(b(x1)) -> c_2(a^#(c(x1))) , a(b(x1)) -> x1} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {c(b(x1)) -> a(c(x1))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] b(x1) = [1] x1 + [9] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [0] c_0() = [0] c_1(x1) = [1] x1 + [1] c^#(x1) = [1] x1 + [8] c_2(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a^#(c(x1)) -> c_1(c^#(a(a(x1))))} and weakly orienting the rules { c(b(x1)) -> a(c(x1)) , c^#(b(x1)) -> c_2(a^#(c(x1))) , a(b(x1)) -> x1} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a^#(c(x1)) -> c_1(c^#(a(a(x1))))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] b(x1) = [1] x1 + [7] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [3] c_0() = [0] c_1(x1) = [1] x1 + [0] c^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [1] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {a(c(x1)) -> b(c(a(a(x1))))} Weak Rules: { a^#(c(x1)) -> c_1(c^#(a(a(x1)))) , c(b(x1)) -> a(c(x1)) , c^#(b(x1)) -> c_2(a^#(c(x1))) , a(b(x1)) -> x1} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {a(c(x1)) -> b(c(a(a(x1))))} Weak Rules: { a^#(c(x1)) -> c_1(c^#(a(a(x1)))) , c(b(x1)) -> a(c(x1)) , c^#(b(x1)) -> c_2(a^#(c(x1))) , a(b(x1)) -> x1} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { a_0(2) -> 12 , a_0(9) -> 9 , a_0(12) -> 11 , a_1(2) -> 15 , a_1(14) -> 15 , a_1(15) -> 14 , a_1(18) -> 9 , a_1(18) -> 13 , a_1(18) -> 18 , a_1(18) -> 19 , a_1(20) -> 15 , a_2(2) -> 21 , a_2(20) -> 21 , a_2(21) -> 20 , b_0(2) -> 2 , b_0(2) -> 11 , b_0(2) -> 12 , b_0(2) -> 14 , b_0(2) -> 15 , b_0(2) -> 20 , b_0(2) -> 21 , b_1(13) -> 9 , b_2(19) -> 9 , b_2(19) -> 13 , b_2(19) -> 18 , b_2(19) -> 19 , c_0(2) -> 9 , c_1(2) -> 18 , c_1(14) -> 9 , c_1(14) -> 13 , c_2(20) -> 9 , c_2(20) -> 13 , c_2(20) -> 18 , c_2(20) -> 19 , a^#_0(2) -> 4 , a^#_0(9) -> 8 , a^#_1(18) -> 17 , c_1_0(10) -> 8 , c_1_1(16) -> 8 , c_1_1(16) -> 17 , c_1_2(22) -> 17 , c^#_0(2) -> 7 , c^#_0(11) -> 10 , c^#_1(14) -> 16 , c^#_2(20) -> 22 , c_2_0(8) -> 7 , c_2_1(17) -> 7 , c_2_1(17) -> 10 , c_2_1(17) -> 16 , c_2_1(17) -> 22} 2) { a^#(c(x1)) -> c_1(c^#(a(a(x1)))) , c^#(b(x1)) -> c_2(a^#(c(x1))) , a^#(b(x1)) -> c_0()} The usable rules for this path are the following: { a(b(x1)) -> x1 , a(c(x1)) -> b(c(a(a(x1)))) , c(b(x1)) -> a(c(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { a(b(x1)) -> x1 , a(c(x1)) -> b(c(a(a(x1)))) , c(b(x1)) -> a(c(x1)) , a^#(c(x1)) -> c_1(c^#(a(a(x1)))) , c^#(b(x1)) -> c_2(a^#(c(x1))) , a^#(b(x1)) -> c_0()} Details: We apply the weight gap principle, strictly orienting the rules { a(b(x1)) -> x1 , a^#(b(x1)) -> c_0()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a(b(x1)) -> x1 , a^#(b(x1)) -> c_0()} Details: Interpretation Functions: a(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [1] c_0() = [0] c_1(x1) = [1] x1 + [1] c^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {c^#(b(x1)) -> c_2(a^#(c(x1)))} and weakly orienting the rules { a(b(x1)) -> x1 , a^#(b(x1)) -> c_0()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {c^#(b(x1)) -> c_2(a^#(c(x1)))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] b(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [1] c_0() = [0] c_1(x1) = [1] x1 + [0] c^#(x1) = [1] x1 + [8] c_2(x1) = [1] x1 + [7] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {c(b(x1)) -> a(c(x1))} and weakly orienting the rules { c^#(b(x1)) -> c_2(a^#(c(x1))) , a(b(x1)) -> x1 , a^#(b(x1)) -> c_0()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {c(b(x1)) -> a(c(x1))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] b(x1) = [1] x1 + [9] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [0] c_0() = [0] c_1(x1) = [1] x1 + [1] c^#(x1) = [1] x1 + [8] c_2(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a^#(c(x1)) -> c_1(c^#(a(a(x1))))} and weakly orienting the rules { c(b(x1)) -> a(c(x1)) , c^#(b(x1)) -> c_2(a^#(c(x1))) , a(b(x1)) -> x1 , a^#(b(x1)) -> c_0()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a^#(c(x1)) -> c_1(c^#(a(a(x1))))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] b(x1) = [1] x1 + [9] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [3] c_0() = [0] c_1(x1) = [1] x1 + [0] c^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {a(c(x1)) -> b(c(a(a(x1))))} Weak Rules: { a^#(c(x1)) -> c_1(c^#(a(a(x1)))) , c(b(x1)) -> a(c(x1)) , c^#(b(x1)) -> c_2(a^#(c(x1))) , a(b(x1)) -> x1 , a^#(b(x1)) -> c_0()} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {a(c(x1)) -> b(c(a(a(x1))))} Weak Rules: { a^#(c(x1)) -> c_1(c^#(a(a(x1)))) , c(b(x1)) -> a(c(x1)) , c^#(b(x1)) -> c_2(a^#(c(x1))) , a(b(x1)) -> x1 , a^#(b(x1)) -> c_0()} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { a_0(2) -> 12 , a_0(9) -> 9 , a_0(12) -> 11 , a_1(2) -> 15 , a_1(14) -> 15 , a_1(15) -> 14 , a_1(18) -> 9 , a_1(18) -> 13 , a_1(18) -> 18 , a_1(18) -> 19 , a_1(20) -> 15 , a_2(2) -> 21 , a_2(20) -> 21 , a_2(21) -> 20 , b_0(2) -> 2 , b_0(2) -> 11 , b_0(2) -> 12 , b_0(2) -> 14 , b_0(2) -> 15 , b_0(2) -> 20 , b_0(2) -> 21 , b_1(13) -> 9 , b_2(19) -> 9 , b_2(19) -> 13 , b_2(19) -> 18 , b_2(19) -> 19 , c_0(2) -> 9 , c_1(2) -> 18 , c_1(14) -> 9 , c_1(14) -> 13 , c_2(20) -> 9 , c_2(20) -> 13 , c_2(20) -> 18 , c_2(20) -> 19 , a^#_0(2) -> 4 , a^#_0(9) -> 8 , a^#_1(18) -> 17 , c_0_0() -> 4 , c_0_1() -> 8 , c_0_2() -> 17 , c_1_0(10) -> 8 , c_1_1(16) -> 8 , c_1_1(16) -> 17 , c_1_2(22) -> 17 , c^#_0(2) -> 7 , c^#_0(11) -> 10 , c^#_1(14) -> 16 , c^#_2(20) -> 22 , c_2_0(8) -> 7 , c_2_1(17) -> 7 , c_2_1(17) -> 10 , c_2_1(17) -> 16 , c_2_1(17) -> 22}